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FINAL SCIENTIFIC REPORT ON

AFOSR GRANT 84 - 0088

David L. Russell, Principal Investigator

Department of Mathematics

University of Wisconsin - Madison

Madison, WI 53706

1. General. The subject grant supported research work in control of

distributed parameter systems, control of nonlinear systems, and the
mathematical modelling of such systems by the Principa. Investigator
and his research assistants during the period Feb. 15, 1984 - Oct.
15, 1985. In addition to salary support for the Principal Investi-

gator and his research assistants, funds were used to bring visitors
- to the University of Wisconsin campus as scientific consultants for

short periods, to support scientific computing relevant to the re-
search program, to support domestic and foreign travel by the Prin-
cipal Investigator and to purchase needed equipment and supplies for
the UW MIPAC (Modelling, Information Processing and Control) Facil-
ity, for which the Principal Investigator serves as coordinator.
Below we describe these activities in greater detail. A copy of a
recent research article is attached as an Appendix to this report.
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2. Areas of Research Emphasis. During the grant period a wide rang-

ing program of scientific research in mathematical systems theory
was carried forward. In the rest of this section we summarize prog-
ress in:

(a) Control Theory of Distributed Parameter Systems;

(b) Control of Nonlinear Systems;

(c) Modelling of Distributed Parameter Systems;

(d) Coefficient Identification in Distributed Systems.

(a) The Principal Investigator has worked and supervised research
in the area of control of distributed parameter systems for many
years, developing theories applicable to wave (hyperbolic) processes
and diffusion (parabolic) processes as well as many other areas im-
portant in applications. During the grant period two research assi-
stants were supervised in carrying out doctoral dissertation work in
these areas.

The first of these assistants, Richard Rebarber, received the
PhD. degree in August, 1984. His dissertation was concerned with
control canonical forms and spectral assignment problems related to
control of infinite dimensional systems generically described by

x A x + B u

wherein the operator A is the generator of a holomorphic semigroup.
Because of recent experimental evidence and related mathematical

modelling work, which we describe under (iii) below, it is now clear
that the most realistic models for vibration of beams, plates, etc.,
are actually systems of this sort, involving frequency-proportional
damping. Rebarber's results deal with the extent to which the closed
loop spectrum of the system obtained with linear feedback u K x
can be specified by choice of the feedback operator A.
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A second assistant, Katherine Kime, is expected to receive the
PhD. degree in August, 1986. During the grant period she was parti-
ally supported with grant funds in her research on control of elect-
romagnetic fields, satisfying the Maxwell equations, by means of
electric currents flowing on the boundary of the spatial region in
which the fields are defined. This research has extended earlier
work carried out by the Principal Investigator under AFOSR auspices.
Ms. Kime has been able to demonstrate the controllability of finite
energy states in a three dimensional spherical region and, with add-
itional smoothness requirements, in more general regions. We ex-
pect the work ultimately to have implications for design of radar
non-reflecting surfaces, etc.

(b) We have been interested for some time in the control of non-
linear systems exhibiting self-excited oscillations because of their

importance in the study of flutter phenomena in aircraft design.
Emphasis has been placed on systems of the form

x Ax + Bu+ C y

= g(x,u,y)

wherein x is the state of an elastic system with basically linear
dynamics and y is the state of a (generally lower dimensional) non-
linear system interracting with the elastic system to produce non-
linear oscillations whose amplitudes may become large as their fre-

quency approaches one of the resonant frequencies of the elastic
structure. We are concerned not only with the question of using the
control input, u, to alleviate the effects of the self-excited osci-
llations in the presence of complete information about the total

system state (x,y), but also with the question of system state esti-
mation and resultant control specification when a lower dimensional
output

d(x,y)

is all that is available. A doctoral candidate, Thomas Svobodny,
was supported during the grant period in the initial stages of his
work in connection with this latter question. He has been seeking
to extend to nonlinear systems exhibiting self-excited oscillations

some work done earlier by the principal investigator concerning
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adaptive rejection of periodic disturbances, v(t), in a system

x=Ax+Bu+v

Promising initial results on observability of linear systems with
time-periodic coefficients are being extended to be applicable to
the nonlinear systems of interest. We have also been acquiring lab-
oratory data on actual oscillating systems to serve as test cases
for the identification, estimationand control procedures being deve-
loped in these researches.

(iii) During the contract period our main mathematical modelling re-

search activity has been in the area of development of mathematical
models to replicate the observed frequency-proportional "structural"
damping properties of actual beams. While this work has been comp-
leted under a successor grant, AFOSR 85 - 0283, we can state unequi-
vocally that the major conceptual advances were made under the aegis
of the subject grant, AFOSR 84 - 0088, during the period when the
Principal Investigator was visiting the University of Florida at
Gainesville. Following many unsuccessful attempts, a model in the

form of an integro-partial differential equation

IL 9~ 2 wElW
p 9-- --w + 2y h(x,)--w (x,t) - 3 (,t)d + EL- 0
atz 0o ) t~x )x4

was developed which, with y and the "interraction kernel" h(x,t)

correctly chosen relative to the mass density p and bending modulus
EI, results in very close spectral matching with experimental data
taken from various types of beams excited into vibratory motion in

a laboratory setting. We have high hopes that this model will find
wide application in theoretical damping considerations relative to
large space structures and other similar topics of current interest.

(iv) We have also been interested in the problem of identifying the
coefficients of a partial differential equation, assumed to lie in a
particular class of such equations, from data taken from solutions
of the equation. Such problems arise in porous flow problems, where

the potential function Y can be measured in the field and is assumed
to satisfy an elliptic equation of the form
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(pVY) =f

with p the permeability of the flow medium and f the source distri-

bution function. A variety of L' and L", methods admitting approxi-
mate realization in linear programming codes have been studied and
tested computationally with very promising results. A graduate
research assistant, Robert Acar, has been working with the Princi-

pal Investigator in this area.

A second type of identification problem concerns equations of
evolution type describing vibrations of physical continua, such as
the wave equation

d 2w k2" 0

J. 3t 2  ax cx 1  0

or the beam equation (undamped here)

w_ =0.
at 2  x2

= °
2

It is assumed that a scalar functional of the state is recorded,
whose power spectrum reveals the natural frequencies of vibration
of the system. The problem is to recover whatever information is
recoverable about the coefficient functions of the system from the
spectral data at hand. A perturbation procedure based on spanning
and independence properties of the squared eigenfunctions has been
initially formulated and will be a subject for future study.

JI

' . .. .
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3. Other Scientific Activities under AFOSR 84 - 0088.

(a) Visitors. Grant funds were used to bring a number of visitors

*2 to the U.W. campus for short-term scientific consulting purposes.
These visitors, with the approximate duration of their stay, their
home affiliation and their area of expertise, included:

C.

E. Fernandez (3 weeks) VPI, Functional Equations;
K. Kunisch (3 days) Univ. of Graz, Identification;
Q. Iqbal (3 weeks) Univ. of Karachi, Algebraic Systems.

(b) Travel. Grant funds were used to support domestic travel by the

Principal Investigator to the 1984 Control and Decision Conference
in San Antonio, Texas and to AFOSR headquarters in the spring of
1985. Funds also supported attendance by the Principal Investigator
and his assistant, Robert Acar, at the October, 1985 meeting on
Systems Identification and related topics at the University of Okla-
homa in Norman, OK. Foreign travel sponsored by the grant consisted
of the July, 1984 trip to Vorau and Graz, Austria, for the 1984
Vorau Conference on Identification and Control of Distributed Para-
meter Systems and for a week of scientific meetings in Graz with

- Professors Kappel and Kunisch.

(c) ScientificComputing, Supplies, Equipment. Grant funds were used

to purchase time for scientific computing on the UW MACC Univac 1110
Computer for use by the Principal Investigator and his assistants.
Funds were also used for various categories of supplies and office
needs such as stationery, postage, long distance telephone calls,

etc. A variety of equipment to be used in the construction of labo-
ratory models for study and comparison with mathematical models was
purchased and put into use in the UW MIPAC Model Development Unit at

1307 University Ave., Madison. Certain modifications to MIPAC's
HP5451C Fourier Analyzer were paid for with grant funds and a vari-
ety of related supplies such as computer discs and tapes, graphics
supplies, model construction supplies, etc. were paid for with grant
funds. Details will be provided in the Financial Report prepared
by our Office of Research Administration, Financial.
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4. Publications Issued During the Grant Period.

Grant funds sponsored research resulting in a number of scien-
tific reports issued over the lifetime of the grant and paid for
their preparation and, in some cases, for journal reprints. A list
of these publications follows:

1. On the Dirichlet-Neumann boundary control problem associated
with Maxwell's equations in a cylindrical region. To appear
in SIAM Journal on Control and Optimization, 1986.

2. Frequency/period estimation and adaptive rejection of periodic
disturbances. To appear in SIAM Journal on Control and Optimi-
zation, 1986.

3. A Floquet decomposition for Volterra equations with periodic
kernel and a transform approach to linear recursion equations.
Submitted to the Journal of Differential Equations.

4. Mathematical models for the elastic beam and their control-theo-
retic implications. Proc. 1984 Autumn College on Semigroups and
their Applications, Int'l. Centre for Theoretical Physics,
Trieste, Italy, November 1984. To be published by Birkhauser.

The above are by the Principal Investigator. Also sponsored by the
grant was the following, by Richard Rebarber:

5. Control canonical forms and spectral assignment for holomorphic
semigroups. Thesis, University of Wisconsin, Madison, Aug. 1984.

V[.
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* 1. Introduction to Elementary Theories of Elastic Beam Motion

The less-than-dashing, rather pedestrian term "beam" has a
guaranteed soporific effect on all but the more dedicated devotees
of the science of structural mechanics. But it refers, of course,
to the indispensable linear structural elements (those seeking new

terminology, please take note!) without which many complex constr-
uctions would be infeasible. Consequently, it is not surprizing
that mathernatical models for the elastic beam have an ancient ard
honorable pedigree attested to by the attentions of some of the
most honored historical and current figures of applied mathematics.

The Eu'iec - Bernoulli equation for the motion of thin elastic

beams is at least two hundred years old. Denoting the mass density,
per unit lenoth, by p(x) and the second moment of the modulus of
elasticity about the elastic axis (about which the first moment of
the c...s of elasticity vanishes) by EI(x), 0 < x 5 L, it is as-
sumed that the energy associated with motion in the x,w plane, in
which the elastic axis is given by w = 0, can be adequately repre-
seIlited by

(w [ [ + dx.
t " 0

*fit is assumed that no work is done on the beam, either by exter-
na2.y applied forces or by internal dissipative mechanisms, an easy
application of the principle of virtual work shows that the motion
must be governed by the partial differential equation

2w  2 r 2t- - EI - ]  = 0 (1.2)

tocether with "natural boundary conditions" (four are required in
all) implying that

2 L 2_2 2 _ LI - 2E .. .. - E I -1- . " = 0
El0

A variety of conditions, corresponding to different kinematic and

dynamic assumlptions, suffice for this purpose. The "cantilever"

.'7
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configuration, wherein the beam is clamped at one end, say x = C,
and left free at the other, x = L, is described by

w(O t) = 0, ( Ot) = 0, (1.3

-2
L 0X

'f a ..... force, Y, and moment, , act at x = L, then the rig't

hand si( e of the equations in (1.4) are replaced by , and Y, res-

D'stvey. We will describe some other cases subsequently.

T"e ayleigh beam model is a fairly modest modification of the

SE.: - erncou7.l1 model, dating back some hundred years or so. To

obtain it the beam element of width -. centered at x is additionally
2 2

endowed with mass moment of inertia z I (x). The term I, [
s aed tc the energy integran of (1.1) and there results the

pa-.. I ferent ial equation

w r- 2 r w =f (1.5)

with corresponding modifications of the boundary conditions which
we wll not detail at this point.

-5.
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The Timoshe 'nko beam' model goes back about fifty years and re-

* presents a more radical departure from the simple Euler-Bernoulli

theory than does the Rayleigh model.. In the Timoshenko model[ J]
beam elements undergo not only rigid motions, as is assumed in the

* previous two models, but also undergo a shearing motion so that an
originally rectangular w,x cross section is transformed into a par-

al.'ellogran as show.- in FiJgure 1(b). TLie total rotation ancl'e of
an elemenit is thus

where for small motions the bending angle 0 is given approximately
by

Ci(x,t) (x,t)

and is the angle of shear. Consequently

-. ...... . ..(X t ) .
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The energy expression used is

4L

_ ~ w 2 -2 *

Z (wW,---, 4 ') = , p+ --- - C + I dx,
;t L t x

where K(x) is the modulus of elasticity in shear. Again, application
of the principle of virtual work quickly leads to the Timoshenko
equations

Dt 2  3xL 0

2T
EI2y + K ' =0. (1.7)

As inspection quickly shows, these equations have the form of two

coupled wave equations. In general the wave speeds FK(x)/FFcx)

.x)j 12are different, resulting in a hyperbolic sys--

tem with four families of characteristic curves, consisting of two
pairs, each pair corresponding two waves of the same speed moving in
opposite directions. The boundary conditions come out of the same
calcuilations as produce the equations (1.6) and (1.7). In the
case of the cantilever configuration these conditions are easily
see: to take the form

w(O,t) = 0, 41(0,t) = 0, (1.8)

K(L) L (Lt) - P(Lt) 3 = (t), EI(L)ma--(- ,t) = ,
ax

where, again, Y and p are the applied lateral force and moment
respectively, at x = L.

:n the constant coefficient case, if I and EI are small inP
comparison with K, as tends to be the case for thin beams, the first

2,equation can be differentiated with respect to x, solved for and

substituted into the second equation to obtain
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which is seen to be a singular perturbation of the Rayleigh equation
with p/K as the small parameter. Similar, but more complex, results

can be obtained in the variable coefficient case and the boundary
conditions may be re-expressed in terms of w also.

A model related to that of Timoshenko, but more comprehensive,
has recently been developed by Antman [ A ], and there are many

othe:rs. 444i--o-----e.1azi-vcle ip ocE~ot~t~l

..... [... ... -'- prcdict - 4atuzl frcgucn z3

... -rf--, ct.. In this regard, from our point of view, it is
preferable to let the beams "speak for themselves". Figure 1.2 shows

the logarithmic power spectrum for excited vibrations of a thin
steel beam, measured in the UW MIPAC laboratory. The peaks evident
in the graph correspond to the natural frequencies of vibration. :n
this case they conform quite nicely to those predicted from the
Euler - Bernoulli theory with very slight corrections from the Ray-
leigh model proving helpful in the higher ranges.

DB
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Fig. 1.2
_1 &

-J

.......• .s,,u,,u ' ', . ,al ,2f //,. ,,:--:L ' '*-A ' L,,-" Z "-" ,' ".,,."".":-""." " "-., " - "..-".-",.' .". ".",".' • ,".'.



I+ - .

-7-

2. Internal Damping Mechanisms.

In traditional applications it is possible to ignore internal
damping effects to a large degree. This is the case because, in
those applications interest is largely confined to static deforma-
tion or, at a slightly more sophisticated level, to the vibrations
produced by periodically imposed loads, such as might be produced,
for example, by a train of heavy cars crossing a bridge or a power-
ful rotating engine mounted on an aircraft wing. Damping effects
in these cases can be largely ignored because the standard rule of
design is to keep the natural frequencies of vibration of the struc-

* ture well separated from the frequencies of expected periodic loads.
4.

As aircraft have grown ever more sophisticated and, particular-
ly, as the construction of platforms in space has been contemplated,
it has become increasingly necessary to take internal energy losses
into account. As structures have grown lighter and stronger they
have also become more elastic and hence more subject to vibration
problems. At the same time, pointing accuracy and platform stabil-
ity requirements have made the suppression of such vibrations abso-
lutely essential. It has become necessary to augment natural damp-
ing by the introduction of active control mechanisms and/or care-
fully matched passive damping systems. Paradoxically, as more elas-
tic structures with less inherent damping have evolved, and as ac-

tive control has increasingly been brought to bear, the importance
of a thorough understanding of natural damping mechanisms and of a
capability to accurately estimate its effects has become more,
rather tnan less, essential. This is true because artificial damp-
ing achieved th.ough active control implementation is inevitabP;+

limited in band width; at higher frequencies its effectiveness de-
creases or disappears entirely - indeed, phase lags may result in
positive, rather than negative, work being done by the control
forces on the higher frequency modes. That the controls used are
generally effective is largely thanks to the fact that natural damp-
ing mechanisms tend to become stronger with increasing frequency,
so that artificial controls can concentrate on suppression of the
modes associated with lower frequencies, leaving higher frequency
"spillover" effects to be "mopped up" by the strong internal damping
operative at the higher end of the spectrum. As internal damping
dec-reaE.e5, it is ever more important to be able to estimate its
precis3e strength so that the band width requirements for the applied

-4 V. . .~ , ;V. -. -. .' .. . . .. . .. -. . . - . . . .- . . -



active controls can be appropriately specified.

That damping rates tend to increase with frequency has long
been understood. Thus simplistic models for damping such as

2

fP Q, + 2yi _. LW + El 2!w 0
t2 at 9x 2 '

e ,y < l e ,- o I 7  % . .., & I l -ad .q

which produce uniform damping rates. arnot bh teken _reoiecl .
The recognition that damping rates in beams increase with increasing
frequency goes back at least to Lord Kelvin in Britain and Robert
Voigt, a distinguished German physicist, both working at the end of

the last century [ N ]. The Kelvin - Voigt damping model app!ies, 1n
principle, to the vibrations of any linear elastic system. The
model hypothesizes that, whatever the linear operator describing
the elastic restoring forces may be, the damping forces involve a
positive multiple of that operator acting on the system velocity
rather than the displacement. This theory, modifying the basic
Euler - Bernoulli model, yie.ds an equation which may be taken to

have the form

2w 2w 2 r 2w
P2 + 2j~j El 9-w 02 2

with apropriately modified boundary conditions. if the fourth
order elasticity operator is denoted by

Aw a2 32wAw P X2 [ EI 2 ]

then the operational form of the equation is

d2w+ 2 Ad w + Aw = 0 2

dt+ dt

If the eiger,.vaues of the positive seif-adjoint operator A are

so that the natural frequencies of the undamped system are

(,k)/2 , then the damped system (2.1) may be seen to have exponen-

6.t

tial solutions e k , where Yk is the corresponding eigenvector of
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A and ok satisifes the quadratic equation

Sk 2  + 2ywk2k + k 2  0

Thus c-., is given by

2 2 4 2 JI/2
k = -1k - [ Uk - Wk (2.2)

Assuming to be small, we see that the ck are complex for some

finite number of values of k with the damping rate proportional
to the sq-uare of the frequency. Critical damping occurs for u =

/i/; for wk larger than this the modes are overdamped with one of
the values given by (2.2) going to -- and the other tending to

t-he value 2" The values k in fact, lie in the locus shown

in Fimrre 2.1, ccnsisting of a circle of radius - , centered at
2 '

the point (-:. ,0) and the portion of the negative real axis to the

left of (.Lk,0). For very small values of v all we would expect
to see would be the quadratic dependence of the damping rate on the
frequency. Whether the overdamping predicted by the model has ever
been oosrerved in the laboratory is unknown to this writer but it
s'ee-.s, on the face cf it, to be unlikely.
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(-1/0o) (-112Y, 0) ,Real ax-s

Fig. 2. 1

In any case, as we will document in the final section of this

paper, our experiments at UW MIPAC, in agreement with experimental

data acquired by many other researchers, indicates a predominantly

linear relationship between the damping rate and the frequency; a

behavior widely known as structural damping,, We will also see, both

from the experimental and theoretical point of view, that damping

of this sort is by no means a "rule of nature"; indeed there is

some reasons to believe that it may only apply to thin beams for

which the Euler - Bernoulli model is adequate in the conservative

case. More on this later.

There is no difficulty in obtaining mathematical models which

exhibit this sort of damping/frequency relationship. Representing

an arbitrary linear oscillator, without damping, by

-d'w

--L + Aw=O,
dt 2

the simplest mathematically viable example of a system exhibiting

structural damping behavior, treated extensively by the author and

G. Chen in [E ],is given by

a.
*1 :- x': --_-" i, -:-.- :-.-.. , -. ' ' -- ' ,-,' ' '- -,' .- ' .,. ,''." -.-.-- ,.,
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d2W + 2)' A'/2w + Aw = 0 , (2.3)
dt2

*where A1 / 2 denotes the positive square root of the positive self-

-adjoint operator A and ^' > 0. Attempting a solution of the form

.- Ckt
e 4ok again, we find now that

ck = ( -_ + _ 1)1/2) L'k

so that, for 0 < ' < 1 the sk lie on the rays in the left half

plane, shown in Figure 2.2, making an angle

a = tan-1 [),/(I _ ,2 )]

with the imaginary axis. a

FW

X
a

Real axis

Fig. 2.2

To explain why we cannot embrace the model (2.3) with unre-
strained enthusiasm, let us consider the constant coefficient case
wherein

e2-
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Aw - EI &w (2.4)

Let us denote boundary conditions for this operator generically by

< P , w > = 0, (2.5)

where C is a linear functional defined on the domain of A. We will
say that the boundary conditions given for A are paired if for each

boundary condition (2.5) appearing in the set, the condition

< .0 , w'' > = 0 (2.6)

appears in the set also. Examples include hinged endpoints, for
which (taking the endpoint in question to be x = 0

2w
w(O,t) = 0, EI 3 2w (O,t) = 0,

and freey clamped endpoints for which (constant coefficient case)
pq

(0,t) = 0, - El (0,t) =0
V3

-- a 3x
For paired boundary ccnditions the positive square root of the

fourth order operator --w is - and, redefining T slightly, the
ax4  ax2

modified Euler equation in this case takes the form

2 23
92w 3w o4w

p -8-2 - 2' t~2 + El a-x4 = 0(2.7)
atx

In this equation the damping term is rather easy to understand from
the physical point of view - it is a lateral force acting on the
beam which is negatively proportional to the bending rate.

In those cases where the boundary conditions for A are not
paired, as in the case of clamped or free endpoints, respectively
corresponding to

'"
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w(O,t) = 0, 2_w (O,t) 0,9>:

El (Ot) = 0, -EI e (0,t) 0,
2, 3

for ,: -..ple, the positive square root of the fourth order operator
ic not the negative second order operator and the nature of the
Qdatij:=ng term in (2.3) is such as not to admit a ready physical in-
terpretation in terms of the properties of standing waves in the
beam. TI the moticn is conceived of in terms of travelling waves
ref'ecoting from the boundaries of the beam then, since the speed of
traveling waves in the Euler-Bernoulli beam varies inversely with
the square of the wave length, "square root" damping can be inter-
preted, regardless of the boundary conditions in force, as a state-
ment that the damping exponent is proportional to the distance
covered per unit time by a trave :ing wave of the particular wave
"m..t. ,: ques;tion. However, this explanation seems rather suspect
to the writer because the expression of standing waves in terms of
r _'1,ng w;i-e. .. a bit of a mathematical artifice here. The e:xpla-

n.,t:n would become quite appealing, however, if it could be demon-
s trated that in long thin beams the attenuation of travelling waves
.s spscfica-y a function of distance travelled rather than other
* fa~'rs. The auth-or is, at the present time, unaware of any research
w_ ih ma, have been carried out in this direction.

- philosophy in our modelling work is that a proposed
ma~h,.. i:-a mz dfi for a physical system must:

I:) be well-posed from the mathematical point of view;

'i) R.?p.iate, _ the physical phenomena observed;

(iii In nolve only equations all of whose terms can be assgned
a direct physical meaning in terms of observable sy-stem
properties or characteristics.

Where the boundary conditions on the beam are not paired, the model
(2.:), at least as far as we understand it now, does not meet the
third criterion stated and must, consequently, not be accepted as a
vial e mode?, at the present time. The apparent necessity of discar-
o :' t-is model under the circumstances just described represents a
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real loss because the system (2.3) has very attractive mathematical
properties, as outlined in [ E J.

Since the middle term in (2.7) has a ready physical explana-
tion as the rate of change of bending, it is tempting to try to use
this equation whatever its disadvantages. If no modifications of
the boundary conditions are made, as compared with the Euler - Ber-
noulli conditions, it is not true in general that the energy is mon-
otone decreasing. Consider, for example, the cantilever case and

the initial state

w(xO) = 0, -(x,O) = 2 - 2x +
3 3 6

(Note that __ is only required to lie in L2 [0,L] for finite energy

solutions, i.e., solutions in the state space H2 [O,L] x L2 [0,L]
appropriate to the corresponding semigroup, and thus need not satis-
fy the bounda-y conditions imposed on w at the free endpoint x = L.)

L32w( ,t), 2w( ',t) 2' 3 w  (x,O) dx = 1/21

t)t I) = 2f -(x,0) ---- ~x0.3 t t=O 0 3t 3t~x-

so that the energy is actually increasing during some interval after
t =, rather than decreasing.

Undaunted by this, it is tempting next to see if some modifi-
cation of the Euler - Bernoulli boundary conditions will result in
solutions of (2.7) having monotone decreasing energy at all times.
One can realize this by modifying the zero lateral force condition
applyincj at an end point to

-2- El 0 (2.8)9tx Gx 3

and one then finds, for smooth solutions, that the rate of change
,*. is equal to

/
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-21- W  dx 5 0 (2.9)
J 0  a t.x 

Unfortunately our satisfaction is short - lived, for we realize that
the beam, with free endpoints has purely inertial solutions

w(xt) = w 0 + wIt + w 2 x + w3tx

for whi:-h (2.9) has the value -2-yLw 3 2 < 0 for w3 e 0 even though no

energy dissipation should take place in such motions; we have over

done our attempt to introduce damping here. Nevertheless, the exer-
cise is not quite a total loss. If we work a little harder and
change (2.8) to

-El 1 +21 (L,-t) i 2' (0t)t) 0 , (2.10)
-E 3 t Dt at

we then find, for smooth solutions, that

a 2-y1 (x't) +
S S(w( t) ,t _: 't) = 2' 2--w (x t dx + W(L, t) -21--(0,"

dt xt J xx L tt

an: th1 ene r-y is seen to be non-increasing for all solutions while
remaining constant for the purely inertial motions. Condition (2.10)
seems somewhat unnatural since it is non-local. In fact, we do not

propo~e !2.10) as a completely serious solution to our problem, hut
this small success leads in a natural way to the more believable
model which we proceed to discuss in the next section.

-
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3. Form of the Mathematical Model.

As we have noted in the previous section, the commonly used
Euler - Bernoulli beam equation, which wil! serve as the starting

"- point for our discussion here, is based on conservation in time of
the energy expression (1.1), i.e.,

catwE w'9 2 + EI [23 ldX,

wherein w(x,t) is abbreviated to w, F(x) and EI(x) to p and EI, res-
pectively. We will assume here that p and El are uniformly positive
oln 0 _ x < L, that p is continuous, at least, and that EI is at
leas7t piecewise twi:ce continuously differentiable on [O,L].

Ass':min7 for the moment that the function w(x,t) describing
* h:' evc'u:>r. of the beam displacement is smooth, an easy calcula-

* t:2

2 2 3d ~~~ -w, r w  a 2w w  &:
' : ' , t) ) = = - + EI d (32

te seccnd term by parts,

dt

_Fl ?w -2w 2w -2 32w L
2 ~ El 2w~ dx + El I 2 L (3.2)

j: ZY- I'
[ ?t ct &tox ;t~x 0

2
The presence of the angular velocity expression w  in the under-

lined term indicates that its coefficient, - - L El 2 w  should

be interpreted as a restoring torque, arising due to spatially vari-

able bending of the beam. Realizing that this coefficient represents
a torque aids us in interpretation of th damping term which we now

"--.-4 .
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introduce into the system via the definition

7'h(xt = 2 P L____) 21(Xt - 32w (, ,t) dt. 1331)-h (x't) = O 2ta &t
0

We think of Th as a torque acting on the beam at the point x due

to the differential rotation, as compared with the rotation at x, of
te beam at points t "near" x. In many cases the support of the
"interraction kernel" h(x,t) would be restricted to a thin strip in

F,, centered on the line x = j. Application of Newton's second law
dictates the symmetry condition

h( ,x) = h(x, ) . (3.4)

I,: constant coefficient applications it is convenient to replace
h(:', ) by j'h(x- ), where v > 0 is used to parametrize the strength
of the damping effect and h(1]) satisfies the normalization condition

h(rf) dn = 1 (3.5)
--

arid the even-ness condition h(r,) = h(-j).

The source of the damping torque in differential rotation
best illustrated for the case of beams composed of composite mater-
;a's, such as fiberglass, boron and graphite composites and wood.
We m;, amagine that long fibers, whose modulus of elasticity, per
unit cross - sectional area, is greater than that of the beam as a
whole, pa-s through the beam, held in place ')y a matrix material of
some sort. As the beam undergoes deformation of various sorts, beam
elements at x and t may rotate at different rates, reflected by dif-

2w2
ferent values of -w-- (x,t), -2--( ,t). If we think of the fibers

at )x at x

th.emselves as having nearly constait length, differential rotation
must refslt in movement of the fibers relative to the matrix, with
accompanying friction against, or deformation (largely inelastic) of
the matrix material. The result is a torque of the type which we
have just described, since the net motion of the fibers relative to
Se matr i, within the individual beam elements, will be different
on one side of the elastic axis from what it is on the other side
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when differential rotation is taking place (see Figure 3.1).

Fig. 3.1

We add the term

L 2w (x,t) dx

0 atix

to both sides of (3.2), so that

L
d T(w t a , w  dx

dt t ("t)- - ) +2 JO 82w a 2w

L2 22
IL a  

+ T dx

+EI 2wa (with a further integration by parts)ax2 atox 10

L 2

L &w a L + I 2!w dx

-- ------------------ - - -- - - - - - - - - - - - - - - - - - -*O% ;3 *. x ) a 2T
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2w92 wI W L
2 2 2I - - - F2- rE1 (3.6)

& x 2 tax Lc3x L. 9x2 J .1 I at

Equating the separate parts of (3.6) to zero (a procedure which can

be justified by the principal of virtual work) yields the integro-

partial differential equation

z2w + EIa2W r

-2 - 2 '- , (,t)ld + er EI2w)- =0 (3.7)

arid the requ-f rement that, at x = 0 and x =L,

EI9 2 w - EIX 3 - ah = 0 (3.8)

't ,2 L -x w2 h

Various beam configurations now lead to different sets of boundary

con,!.-tions. For example, in the case where the beam is clamped at

x 0 and free at x = L (i.e., the cantilever case) we obtain

2:., ~~w(0,t) = 0, -- (0,t) = 0, -- ( t) =0( 9
c-x 2  L' 0, (3.9)

E-( x; ... - = -2 _ ,, d = 0. (3.10)
-t a.-

The reader will be able to generate boundary conditions correspond-
ing to other config-urations with equal ease.

Equation (3.6) now becomes

d ,' , ,t) -2 h , 2W ( t) L 2 w (x t) t 2 w - (x, t)d::
dt aht 0OJ O  3~g. ~~ t a~c::

- (since the roles of x and are symmetric and h(x,t) h(4,x))

-..

. . , . . . : r, ,4,. ;, , ,-..,.... , . . . . . . .. - .. .4 ,. , -. , .-
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°L TL[ w ( 2

= -j f h((x)[ -2-w(t- (,t) Jdx2 (;,t) dt

L L

~L L &2w,) (x,t) dta (x,t) dx

Jo 0 31t3 x atax t,xL IL h(x,) [ 2W (x,t) -92t)] 2w( x ,t) dtdx
0 J0 t x at9x 9 ax

I1 h(Y.,t)[ (t~t (xt) - x(,t) d~dx

= L - h(x, )[ O2 w  (xt) - , dx 0 (3.11)

0 0 L atax 9t x

Moreover, assuming that h(x,t) is not identically zero, the inequal-

ity 4S strict er:cep.t in precisely the cases where 92w is constant,
3tax

i.e., the inertial motions. Thus energy is strictly decreasing

whenever the bending rate is not identically zero and is conserved

when the bending rate, vanishes identically.

In general the form of h(x,t) will depend on the elasticity of
the fibers of the material, as discussed earlier, the distribution
of their lengths, the nature of the interface between them and the
matrix material, etc. The more elastic the fibers and the shorter
their average length, the more the "mass" of h(x,t) will be concen-
trated near the line = x.

For perfectly inelastic fibers, all having length L, the same
length as the beam itself, h(x, ) is a constant; call its value 1,/L.
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L h2 w  (t,t)d_ (Lt) - 2w (Ot) 1

J ht~x at at

h(x, ) -W (xt) dt = ? W2(x,t)

0 Ot.x Ot~x

so that (3.7) becomes

w 9w , E2 0 2F, :t2  - 22' ... . +
2t x2 22 E 0x

and the fourth boundary condition of the cantilever case in (3.10),

for example, becomes

- w I9 I-~ I. Ei( L+ 2 9 (L,t) - -- (L,t) = 0,
ox " 2 := L a t x L at

in ex:act agreement with the model obtained "ad hoc" at the end of the
previous section.

In the case of metallic beams the "fiber" explanation used
above is not persuasively valid. It may be possible to think of
elongated crystal structures in the material playing much the same
role as the fibers above but the analogy may well be far-fetched.
The evidence for frequency-proportional damping is not quite as comp-

elling at this writing for metallic beams as it is for composite and
wooder bears, as we will see in our discussion of experimental

re3'ults i:- Section 9.

I-.. -
*4*.* .*.. .* II

4** ... .*. * . . . - . : J :. :.. * .
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4. Additional Propert ies of the Model.

Application to metallic beams, if valid at all, would necess-
arily involve the supposition that the fiber/crystal structures, in
terms of which the damping action has been explained, are rather
short. It is therefore of some interest to investigate the limiting
form of the equaticns as the support of h(x,t) is restricted to
small neighborhoods of the line x

. To avoid complications with the boundary conditions here, let
us consider an infinite beam, so that 0 is replaced by -- and L by

Then the energy loss term in (3.11) is

(x, ,t) d dx (4.1)

4 JJ - ~ L atx tax

Using the change of variables

y - (x + U), T1 1 (x-
, -k/2

the integral (4.1) may be rewritten as

,--- 1, t) W (y- T) ,t dr-dy.

Now, assuming w sufficiently smooth,

a2 w (y + t) az-- + Y! a~
- 2[

and the integral is

2 h (Y+)2 3W d2d (4.2)

Consider a family of functions

• , %~~~~~~~~~~~~~~~~~~~~~~..".. . .- . ... ... -. .. .-...... .. .. ... ... . .. .. %.. .. %% . .. . %
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h(x, ) = hT(xt) , , > 0

each having the properties assumed earlier for h(x, ) and such that

li. I (Y_ r)' I -_T-- T1-
1/21 V 22 -1 H 2

whi e

SI (YT ) I-- (Y-ii)] T2 dT 5 J()G(y)

where K(y) an Gy) are positive integrable functions of y and

Jrm J(k) = 0.or- 0

Assur ni that is such that

.2

rJ r "dc
... ( )),t 12 < B

L 0 .'- .~

uniformly for a l y and rt while

4.I ; -. K- ,tjj -L ° F a [  *o:)td <s)

uniformly fo)r ali y in (-.) and for r, in [,, where

Zir ,) = 0

the lirniting value, as 0 - 0, of the integral (4.2) is seen to be

. .. . - L-j-;,-L j, * d = 2 H (x ) dx . (4 .3 )

%~%*.*. ***4N4t
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Returning to equation (3.1) with O,L replaced by - , , res-

pectively, we see that, if the term (4.3) is added to both sides of
that equation, there results
.'9

,t) 3 w-a S(Wd "t)'aw "t ) 4 2 H(x)(at w (x't)) dx =
.t at t_ tx t

311 32W + ± [ 21 a 3w + ElIa dx

= (after integrating the last product twice by parts w. resp. to x)

_ L p- + 2 - i -a-- E K dx:. t x atx "  ax, ax

(Here we have, of course, assumed that w, -!t- and their x-derivativesat
tend to zero at an appropriate rate as Ix) - o.) Now the condition
that the integrand should vanish identically corresponds to the Kel-
vin - Vogt partial differential equation

+ 2 .H + . .- = 0 (4.4)

Thus our model is consistent with the Kelvin - Voigt model, under
the stated conditions, as the "mass" of h(x,<) is progressively m re
concentrated near x = ,. For fixed T, equivalently fixed h(x,t),

this means that our model approximates the Kelvin - Voigt model
for vbrations of large wave length, i.e., low frequency. This wil!
be made more precise in the following material on the spectral prop-

erties of the constant coefficient equation on (-.-, ).

Further work of a more precise character will be required in
order to obtain a rigorous argument showing that solutions of (3.71
approach solutions of (4.4) as 0 and to account for the same
phenomena in finite beams with their attendant boundary conditions.
We have some preliminary developments in this direction, but the
work must appear elsewhere.

Ea.
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We pass now to a discussion of the spectral properties of the

constant coefficient equation on ( ..,,.Taking our earlier remarks
into account, the constant coefficient version of our equation, with

h ----2 . .h... t t).-. .(x-rt) dft + -- = 0. ( .5)
t 3. t a. x.

T",e cinh has the properties, described. in (3.4), (3.5)an p
El Eire positiLve constants. Equation (4.5 ) applies for an infinite
beam or, In much the same form, for the periodic case wherein x is
identi fied with X + T, for some finite L > 0. Our purpose iii this
paragraph is to study spectral properties of this equation under the

assum-ption th;:t Ii E L](.. <: with h(T-,) dr = 1 . Accord.nglU y, otir

eqaationl becomes

h.. 2TI h ) 3Sw- (x--i, t) dr, + E1 a w = G, (4.C)

'ft.

:::the form: which we will use for our analysis. The periodic case may
• be d'eo,. along q-,,jte similar lines.

We begin by looking for solutions of (,4.6) in the form

ft(3 -25

w(x,t) = e t (

I. %
iento act, the condystat effcetvrino u equationwt

2" h r_ d.- + E I~ -v 0. (4.7)

Le

,-ncon ha- the preri dri- i (3.4, (3.<n '-

i*., ,,. "-."..-.'."." . . ... ' '. /-.- E-" ..re"-p"sitive" con-st.ants-. ( . ) r. app .ies for an- - infi-- nite_,'. .k -'
"t "" " beam"" or,;""" " " " :n much th %same form,' for the"periodic case where'i" -':,, '"L' in xm is .
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be the Fourier transform of Y, convergent in an appropriate sense.

Applying the Fourier operator to the equation we have

PC + 2YT r(I h- T + ElIT 4 , Mr) = 0. (4.9)

The coefficient of +(,r) must vanish on the support of the function
(or distribution) H(r), leading to the following relationship be-
tween c and T:

T r2  ]2
C ) F _ g(T) + / g(T) 2  

- pEI , (4.10
- L

w i th

.g~f =T 1 h T ) (4 . II

Kere, a. inm'-ed earlier, h(T) is the Fourier transform of the int-
Serrcto on kernrel h (i) From the integrability of h(rj) we know that

h(r) is continuous and

Iim h(T) = 0. (4.12)

For a relatively low level of damping we may assume -2 < pEI. Then,

from (4.10), (4.11), (4.12), it is clear that for large values of T

- pEl - -

~E -y pE2 r

T - ,pEI 2 I -T/EI- ,

to first order in h(r) as ITI - Asymptotically, as ITI

r, ie£ along the rays

R+,_ ={z z = r(-0vpEl ),r>0}

fL , . . , ., a: : .:: a : : .
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in the left half complex plane.

From (3.5) it is clear that

lir h('r) = 1

so thit

-- -iv E> + 0(1) J , i 0

showing that the spectral curve is tangent to the imaginary axis at
the origin. In fact, since h is even, two integrations by parts
show th:t

- e-'T h(,)drj = 1 - T2 e- e()d ,

where

h(r), lim C(ij) = 0, lir ('(I) = 0.

This, s .,

2 [ ~2 / _,2 ]

=r)dri - ..2 h(rq)dq

Thus, at longer wave lengths, the spectrum tends to that of the
corresponding Kelvin - VoIgt equation, as we should expect from
our ear:4er work in this section since taking long wave lengths
for fi:-ed h may be seen to be equivalent to allowing the support
of h(n) to contract to (0), keeping wave length fixed. A typical
spectral curve for the beam of infinite length with the proposed
damping mechanisr is shown in Figure 4.:.

, . , -. % ". . -......... . .. -. ...-... ....... ..
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N

N.4

1011

N.

Fig. 4.1

For finite beams of large length, L, the spectrum will consist of
discrete points closely spaced along a similar curve in the complex
plane.

From (4.9) we have

h(r)= 1 + ElI2  + PC(T

2yo(,) 27-7
2

Thus, in principle, h(-), and hence h(n), can be reconstructed from
the knowledge of 6(T). This remains true in an approximate sense
for finite beams of large length and may prove useful in identifying
actual dissipation mechanisms in the laboratory.

It is interesting to note what happens when the basic, conserv-
ative, system (before damping is introduced), i.e., the Euler - Ber-
noulli model in the above analysis, is replaced by the Rayleigh mod-
el (1.5). The equation (4.9) is then replaced by

w(p + I+ 2)T 2 (-h(T)) + EI(44.0)(r) 0

which leads to (cf. (4.10))
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~~~ -g ( ) ± '/g~)(~ / )

Ip

p+I - P

-- ----- 2-}'_ PFp+IpT ) EI-v 2 - _ h_ ... I-Vv' (p+I T
2 )EI-- 2

1 (P+I 7 2 )EI-T 2
-p- --- -- -- -- -- -- -

The underlined terms tend to zero as T . so that

Re ( - , (iT
'p

in this case the spectral curve is initially tangent to the imagin-

ary axis, for IT! near zero, and tends to a line parallel to the
aginary axis, ', units to the left, as ITI -4

Wp.

• .. .- .... . . . . . .. . _....... ~ . ~ - - . ... . - - .- • - .-.. - -.- .."- - "
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5. State _:ia-e, Boundary Conditions, Semigroup Formulation.

From the form (2.1) of the energy expression for the Euler-
Bernoulli beam we' are led to define the state space as a subspace,

or in sore cases a quotient space, of H2 [0,L. x L2 [0,L). The inner
product should be consistent with the bilinear form

OL

<(w,v), (w,v)> J p (x)v()v(x) + EI(x)w''(x)w''(x)ldx

which, in turn, is related to the energy-motivated seminorm

v [p(::) v(x) 12 + Em(x)'w''(x) 2 ]d:. (5.1)
U0

To do this properly it is necessary to say something about the boun-
-ary conditions, not all of which are created equal. Let B be the

se' of distributior pairs, in Schwartz's sense, such that the boun-
-dary conditions on the unforced beam are expressible in the form

<9lw> + <9 2 ,v> = 0 , (i,2 ) E B (5.2)

Some of these boundary conditions represent kinematic constraints

Swh:.e otners; are really dynamical equations. The former constitute
a suose: C C D of pairs (f,O), where p is a continuous linear func-

tional on H2 [O,L], which prescribe certain constraints on the beam
dipiace-ent without any reference to applied forces, such as, e.g.,

w(O,t) = 0, -2W (o,t) = O, etc.

Let us (encte the subspace of H2 [,L] consisting of w such that

<;,w> = 0, ( ,0) - C, by H2[O,L]. The remaining boundary conu2-_jt~on p - B C, re cond-

t-on-;, corresponding to distributlon pairs in B - C, are really
dynamical equations which have to do with certain forces appi:e:
tc the sy.stem or, in the free case, state that certain force.-
zero. Thus, in the cantilever case
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-U-w

EI (L,t) = 0, EI2=Lt

are statements that the applied torque and lateral force, respec-
tively, at x = L, are zero. In the forced case the right hand sides
would be replaced by a moment p and a lateral force TP. Although
the elem.nts of B - C in this cantilever case still have the form
(;,0), It s clear that is not a continuous linear functional on

Let N c be the subspace of H2[O,L] x L2 [O,L] on which the semi-

norm (5.1) vanishes. In many cases NC = (0) but not, e.g., in the

caze of the beam with two free endpoints, or in the case where one
e;dr:i is fret, and the other hinged. Extended in the obvious way

?i L H2[0,L] x L 2 [0,L] I/N

th_ semI-norm (5. 1) becomeE: the norm for our state space, N. We
w'VA continue to refer to state vectors as displacement and velocity

pairs (w,v); the el-uvalence class will be understood in those cases
where Nc  (0).

Th state snace -now defined we proc-eed to pose our dynamical
ecquations in that conte:nt. With z (w,v), consider the unbounded
cp--ator o- PF d.fined by

0I w

L-A -G j v

where , hr opert ,,o, defini t ionc of A and B are

Aw (:-:, (Ei(,)w ' (,x)) ' ', (Gv)(-) -2 - h (x, )[v (x)-v ( )Jd .
~.0

The doain of A consists of those pairs (w,v) c H4 [0,L] x H2 [0,L]
( . tr= for a " 2) B. Passing to equi-

.-aoenr o cI assses where necessary, this is a dense subspace (A.) C P
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and A, so defined, is a closed operator. Our model equation (3.7)

together with the boundary conditions arising from (3.8), and dis-

cussed earlier, is then equivalent to

z = AZ (5.3)

The computation (3.11) can then be used, with a few refinements, to

shoDw that A is dissipative, i.e.,

<z,.z> 0 0, z E D(A)

From. tlhs it follows immediately (see, e.g., F ], [ G ]) that A
generates a strongly continuous semigroup, Z(t), of bounded operators

it tu:n out that the sen~ilrc'up Z(t) is, in fact, a holomorphic
senijro-p, as one might expect from the location of the spectrum in
the constant coefficient, infinite length case discussed earlier. A

general idea of the proof of holomorphicity proceeds in the follow-

ing way. First of all one studies the operator

4Ao = 1 -G

AG0

where

L

(G v)(x) = -2 -  H(x)v'(x) , H(x) h(x, ) d ,
.4x 0

the diomain of A0 being defined in terms of a suitably adjusted set

of boundary functionals, B0 . The boundary conditions corresponding

to the subset C C B remain unchanged as a subset of Bo o so the state

space P remains unchanged. The problem of finding and estimating the

normalized eigenfoLnction pairs (tk'k) and associated eigenvalues,

,k, for A0 is a complicated, but entirely standard [ K ], eigenvalue

probiem; for a system of ordinary differential equations with bound-

ary conditions of standard typ.. It can be seen, and the details
will appear elsewhere, that the Ak asymptotically lie along the rays

'[" " ~~.. .. ....... ..... " "- . -. . ..... .- . . -V
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arg(z) = (n/2 + E)

in the left half complex plane, where E, satisfying 0 < E < r/2,
depends upon p(x), H(x) and EI(x) only, not upon the boundary con-
ditions specified via Bo . The eigenfunction pairs (Ikqk) may be

shown to form a Riesz basis for Y. It is possible that some finite
number of the Ak have positive real part because A0 is not dissipa-

tive in general. The Riesz basis property of the (Ik,1k) together

with the asymptotic location of the Ak are all that are required to

show that Ri generates a holomorphic semigroup on Y (cf. [ F j).

Now let ( k,'k) and ?k denote the normalized eigenfunction

pairs and assc'ciated eigenvalues for .. It turns out that one can
prove that

lim (jAk - Xk l ) = 0,

C " k I P )-(k C <
. E(k'k)-(k'k)E' <

From the last relation, using a standard Hilbert space result (see
[ ] ], p. 208 ff.) it can be seer. that the (Pk14'k) also form a Riesz

baoi for Y so that A is seen also to generate a holomorphic semi-
gro'zp on .

I
.5
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6. ! pline / Fin-te Element Approximation.

According to the principle of virtual work f I 2, given w(t),

the trajectory of a mechanical system subject to holonomic constr-
aints H(w(t)) = 0, with forces fi(t), i = 1,2,...,r, acting on the

system, the work done by these forces in a small virtual displace-
merit from w(t), at any instant t, vanishes. More precisely, if v
is a vector such that

'(w(t)) v = 0

then

r ,
Z fi(t) v = 0. (6.1)

i=1

should be noted that the sum (6.1) must include all forces act-

ing on the system: inertial, restoring, damping, exogenous, etc. If
a da.ping force, linearly dependent on velocity,

g(t) - Gw(t),

where G is a non-negative self-adjoint operator (matrix in the fin-
ite d-imensional case) is introduced into an otherwise conservative

system whose kinetic energy is !jw(t)*Mw7(t) and potential energy is

!w(t)""Vw(t), M and V also non-negative self-adjoint, M positive
2

defindte, (6.1) may be expressed as

MW.(t) - G-(t) Vw(t) v = 0 (6.2)

" where -Mw is the inertial force, -Gw if-: the damping force, and -Vw

is the restoring force for the system. Replacing v by vz (which must
bE, an admissible value for v) we obtain

. . . * * . *

'- * *.*, .
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d (w(t),w(t)) = -w(t)*Gw(t) (6.3)

dt

where C ic the energy

4. 'wwt) = Iw(t)M + w(t)*Vw(t) (6.4)

Formally, the derivation of the equation of motion,

tt

SMw(t) + Gw(t) + Vw(t) = 0, (6.5)

Is carre- .: via (6.2); in practice it is usually inferred from

(6.3) after a quadratic form -w(t)*Gw(t) expressing the energy loss

through damping is hypothesized. In spatially distributed systems the
fCrms i1, which G, V appear :n (C.2) may be different from the forms
in which they appear in (6.3), (6.5) due to transformation via integ-
ration by parts (use of the divergence theorem), appearance of bound-
ary terms, etc.. For example, (6.3) might be expressed as a quadra-

tic form in ---- , but application of (6.2) requires that v should be9xt

an admissible velocity - not a partial derivative of such a velocity,
necessitating a transformation by integration of parts.

To implement a spline, or general finite element, approximation
procedure for the damped beam equation we begin with a finite dimen-
sionai vector t of coordinate functions

(6.6)

We may, optionally, assume that

I.

< ,y > -- 0, i = 1,2,...,n, (3,0) E C,
-p

so that the Yi satisfy the kinematic constraints from the outset, or

these constraints may be imposed in a later step to be described.
. For beam applications the basis functions Ti' i = 2,2,...,n, must be

such that, with
*1

A'.
o°.
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n
w(x,t) = w(t)(i(x) = J*w(t) , (6.7)

i=1

-(tt) 6.8
' atLt. i=1

na2w ( tt) = t w 't) i ( ) = '( )w t) (6.9)
$t~x i=1

4 are well-defined quantities at points $ where external lateral forces
* arid torques are to be applied.

Use of the representation (6.7), with concomitant expression

of a", etc., as in (6.8), (6.9) implies movement of the beam is sub-at

-. ject to certain holonomic constraints; infinitely many of them, in
principle, the net effect of which is to allow the system to move in

the finite dimensional subspace spanned by the coordinate functions
Yi i = 1,2,...,n. With such representation of w(x,t), the work -

energy relation with external lateral force c and torque T applied at
the point x = may be seen to be

d [ t), : t + w t- Vw (t l tlG v ( t) c5 1 ( t ) + ,r 1w t . 6 .10)
dt

The functions Ti are often chosen to be independent basis functions

but this is not always convenient at the outset. If the Y are not

independent there will be a set of r independent linear equations
satisfied by the accompanying coefficients, which we may represent in
the form

P w(t) = 0, (6.11)

where P is an r x n matrix, r ! n - m < n. Let the m x n matrix Q

be such that [) is nonsingular arid define Q w = z. We then have

w(t) fz(t))



-37-

Writing = (TU), we find that w(t) U z(t) and, with

= U*MU, V = U*VU, G = U*GU

_ we have, in place of (6.10),

•t.d z(t)*Mz(t) + z(t)*Vz(t)] _ (t)*G (t)
... dt

(56(t) cl(t)*U5(t) + -r(t) vm(~*Uz(t) ,(.2

leading to the equations

M z(t) + G z(t) + V z(t) = 6(t) U*c(t) + r(t) U*Vr(t) (6.13)

ac the equations of motion for the system.

The kinematic boundary conditions, corresponding to C as descri-

bed above, may be imposed via (6.11) if desired. The other boundary

conditions, corresponding to B - C, are never imposed explicitly; they

come about as particular cases of the dynamical equations in (6.13).

If the coordinates to be retained are a subset of the components

cf w, we can write w* = (w*, w*), where w comprises the components to

be discarded and w the components to be retained. Then P is partit-

ioned accordingly: P = (P, P), and we can assume that the r x r matrix

is nonsingular. Then, with m = n - r,

w -(PV'1P wj , ) w U w
m

and we obtain (6.13) again, replacing z(t) by w(t). Computationally

this is easier because P is r x r while is n x n.

In actual computational work it is preferable to define the

energy and dissipation forms in the continuous context and then

approx:imate them by quadratic forms on finite dimensional space:.
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AppJication of (6.11), (6.12) to the approximate energy and dissi-
pation forms then leads to the finite dimensional approximating

equations of motion in the form (6.13) with symmetric matrices M,

G, and V. This procedure is much easier and more reliable than
* first deriving the equations of motion as partial differential equa-

tions a:. the continuous case and then proceeding to solve those
equations numerically, taking into account all of the boundary cond-
,tior:s. In fact, by the recommended procedure, only the kinematic

bound4ary conditions are actually enforced explicitly. The example
of the ne::ft section should be helpful in clarifying these matters.

>-l-- --. "'-'" 2 "'.'" '.? '"-i'. " --2 -'<" "S .-' -i'.i-. '...- < -.'-- -.< -' -;: "" -': - c . --. . . -.-..-.--.- *- . '.-.. - - .. >.. .'-
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7. Ap roximation and Simulation for the Cantilever Beam System.

Let the interval 0 = ZO,L] be divided into m subintervals

Tk I ( L km = [Xk- Xk] = [Xk- Xk 1+h], h = L/m, k = 1,2,...

and consider general quadratic functions on the intervals Ik:

,2

qk(x) = ak + bk(x-:kl) + C( 2

2 an xtne
The functions defined on 1k by I , xk (x-xk)2, and extende

by 0 :o th-e .est of ¢. correspond to the functions T i =

n = 3m, dis_,cussed in the previous section. With

a(t)* (a (t). .... a (t)), b(t)* = (b , . ., bm (t))

.. 4))

c(t)* (c ( ). . .c , ,

:..... . . .....- in2y ×I .... ( x - I

an' V,,(2 c' ( )*,b(t) ,c(t)*), we can define a function w(xt),

pe:,ewise quadratic in n, with possible discontinuities at the

points : 2 m- by

WE prcc ,,; to define the energy and dissipation forms in terms of

these functio:ns, ignoring the discontinuities for the present.

Au i. the beam to have mas density F, the kinetic energy is

S0 
k Y - I

S. . . ..... .-.--.
. . . . . . . . . . *.*. *.* .. ~ ....-- - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - * ~ %I
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' ha,,(t)V+, b t 2+ Ct) +h- atbhak(tiCk(t)+-hLkt)k)Jk

t - ) w t *MwJ(t)

from which we see that

r hl lh2 l' 2 3. -zm m m
M = -4 hI m. -h'I ±h4 1m

S M~ m m. m

:~. l: de,- tes the r : m identity matrix.

Ne.:t we pass&; o th e potential energy which, for consta: t bending
modulus EI, is

1::.1) El 4U~)d::

= 2EIhck (t) 2

so that

20 2

V 0 0 0

Passing now to the dissipation form, we first of all take the

interraction kernel h(x,) to have the form Ih(x-t) where, assuming

that m will always be a multiple of a fixed positive integer .,

* h(h ) = 2, I ji -< Ij , h(i) = 0 otherwise.

WE defin' -- m)= m,,/ for all values of m used. For the case m
.* 9, u = 3, the support of h'.-:-) is the shaded region shown in

FIgurE. 7.1.

i...----.'-') " ." < .:.-.'-'-"v " .-. "*.-*.-.. .>'.' -. .- < ...-.-. .~ --- 2 .-.-.- 4 "i-; ''') -- '" .- - ..-.- . -v - -
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Fig. 7.1

Let

S { (x,$) I k x : x k , x] p < I x }

Then in Sk we have

_ -i_(~t) 9- ( ,t) = b~)2kt(-kl-,t-c() $_

For Ik- I < , we square this quantity and integrate over Sk; then

sum over the indicated values of k,Q to obtain the quadratic form

w (t)*O w(t) =2 -E(~),bt'6t* 0 0 0 a t.

0 hJk,p h 3 Jkp 5i
0 h Jk, 10 ]

where

=k4' 11 (j,' = jk p~ _j, Ljk..lk=-
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J = 0 otherwise;

k - . = -1,

[Kkij 0 otherwise

Additionally we must treat the upper and lower borders of the region

of support of h(x-l), consisting of triangles T k Tk ' k =1, 2,...,.M-v

as shown in Figure 7.1. After integration of the same function as

shown earlier over these regions, followed by summation over the re2-

evant indices, we obtain

M-v

wt~mwt =2~ (a(t)*,b(t)*,c(t)*) [0 0 0 a(t)
k=1 0 h 2 JI h 3 Kk, b (t)

0 h K ., ¢ h-Lk , C t J
with 5i, arid K1:, as above arid

t JJ = 0 otherwise;

After C- and C have been computed as indicated we set G = G + Gil

Ne:t there is the matter of the construction of the reduction
matrix U. From the representation on Ik

2= ak(t) + bk(t)(x-:.:k-l) ck(t)(x-xk_1)

Y(x,t) = b (t) 4 2ck(t) (x-x:. 1 ) ,

we see that wx,t) is piecewise C' on kQ just in case, fcr 1- :,2,

.m-1 we have

.. -....... ...-... . .... ' ,,:-. . •.... - - *4-. - .... nn ,-- Iu- mn.- mn' nl h mhn
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ak+:(t) = ah(t) + bk(t)h ck (t)h 2

h4(t) = bk(t) 4 
2 ck(t)h

For the canrti2ever case of our example we have, in addition,

a,(t) = 0, b Mt = 0

1

Accorc r, gly, we have the following linear re atonshIpS hcld4ng be-

tween the coefficients

1 0 0... 0 0 0 00 0 ... C 0.. 0 0 a
1-1 1 0 -11 0 -h 0 ... 0 0 -h 0 0 ...- 0 0

O - ... 0 0 - 10... 0 0 - 0 0... 0 0 a
i b,

0 C, 0 - 1 0 00.. .-h 0 0 0 0...-h2 0 0

0 0 0 . . 0 0 i 0 0 .. • 0 0 0 0 0 .. . 0 0 m
0. r: .. -1 1 0 ... 0 0 -2h 0 0•... 0 0 c

.0 ¢ 0... 0 ,e 0 - 1 ... 0 0 0 -2h 0 ... 0 0"

0 0 0 0 0 0 0 0.. .-1 1 0 0 0.. .- 2h 0

p p

L",t be the matrix with

I , i , r 4 = 0 otherwise.-a*

Then, wt Q P I R we ha'e

1 4 R hR j [Q hR]0 I+RJI=0 Q+

s reai i nverted, giving

L-_'

4.ti,, ,i.. . .*--4 . . * ,*.*ah .* ~ * **, . .. .. - - ., .. , _ . ,• • , , " , % , ,."
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- Qa _ (h(Q - Q-')
IP

0 Qi

S Ine

2hR , 2h(Q-I M )

twe obtain, as the redaction matrix
_ -, 2- -2-

- h'I m - 3h 2 Q + 2h 2 Q

m " im

Th':n a further easy computation shows that

r100...0] 1 0 0 ... 0
1 0 ... 0 2 1 0 ... 0

11 ... 0 ,3 2 1 .. 0

.m m-I m-2 ... 1

WE' sc- therefore that the reducton matri>" U can be computed explic-

Vty :.ithy:) h;vinj tz re c t tc :umerical matrix inversion in this

exami-ple. Once this has been done the matrices M, G and V of (E.:2'

ca: he calculated readily and, using a Cholesky decomposition to,

write M ;n the form t with f lower triangular, th euat n
can be re- a'd pcst-mutpled by .- and (* )-V respectively,

yied an ecuation fr which the correspondi-ng f -rst orc -

matr :s

.0 tr a,=L }V~w _- /

W'e ha ve, c a 'co ~a ted ] th is m at tr !:: , ark: sub .:-c.uc>:.t- it s "o::.

uec, for a cantilever beam wit. - - 2, = C.0 E I00 and le...

L 0 !. Te irterraction kernel h(x- was taken to C c. ..

..th .,pport restricted to x- < L/2. In Figures 7.2(a, anc,

-" "" ""; "; : : < " " "- "; '-2 "- "- "- ' "- '-"-""-"<-v ." ,' < '-. ..".<../ , ..-- ... .. . "- - "-
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we show the eigenvalue patterns in the upper left half plane for in
= 14, 16 and 24 (not all of the eigenvalues are shown in the last

* case). Figure 7.2(b) magnifies the lower right hand corner of Figure
*- 7.2(a) in order to show the pattern of the eigenvalues corresponding

to low freauencies more clearly. Variational considerations account
for the decrease in the natural frequencies as M gets larger but the
increasing negative real parts of eigenvalues, or exponential damp-
ing rates, came as somewhat of a surprize. This property, if it
can be substantiated in general, would be quite desirable for appli-
cations because it would mean that damping rates are systematically
underestimated in approximations of this sort, providing a safety
factor in control applications. From Figure 7.2 it s seen that the

quadratic- dependence of the damping rate on frequency at the low end
of the spectrum has only the most limited range.

0O-- . - - - '

* ~.o
- -_.I

o 0

0 . . ... •_0. . .

C
N

04
0

N0

Fig;. 7.2(a) Fig. 7.2(b)

CS ;]7 acts indclicce the location of eigenvolues for M =14.
HoIlc-u dots cor-respond to M = 16 and large solid dots shou
eigenualue5 corresponding to M = 24. Where the last two o re
too close bo e 5eparate on t,,e graph, a ho]o ott

hea-'Y oute-r boundary is shown.)i

I- i

I I

I - . ' '- , '-"' z "' U' " 
". "- . ""

°
" """' - -

° " 
- • " " "-S II I
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8. omeTheor,)y Related to Laboratory xprimntaion.

The fo~regoing res-oits from mathematIcal simulation can be, and
hov,,e been, compared with related data taken from elastic beam exper-
iMen:ts :n a la1boratory setting. This, of course, is nothing new by

- t5 1)f but perhaps we can claim that we are in a position to look at
sch ata in a different light than most of our predecessors. Th.e

author i-s fortunate to have access to extensive electronic equipment
for collecting and analyzing data in the UW MIPAC (Modelling, Infor-
mnation Processing arid Control) Facility and great advantage has been
tak'en of tc.:s e:xperimental capability during the last two years.
B _cr describing the results of this experimentation program and
th ec~nnpofteerslsto the mathematical simulation

- dicussc abvewe dores brefly to describe the experimental
-conte-:t and some of the inherent p~roblems attend-ant upon the obser-

vatior of vibrating beams in the laboratory.

Z.The l7abor DatoryZ beam ccnfigauratiorns easi'est to reali-ze, at least

------- eare those 4 nvol Vi4ng either clamped ends or free e7uc-s.
::.e resu. lts which wie c.ite in Section 9 were obtained in the clar;-pef,

fE:-- 'rant i lever-) sett ing ana i.n a "pseudo" free / free config-
E* Ira I The claorped_ ., clamped beamr is easy enough to work wi-th-,

*anc. we have conductecd some experiments in thi-s context, but we do
nt report on this case here, mainy because we have or.ly one clF..

rec> e7 aneaate to thle task. That the task of1 real i*zin.g a goodl ap)-
pro::maaonto a clamped beam endpoint is not at all trivial wil-l be

Conn,_enTtEdC on. at som.e length later in this section. The free ,, free
cce is Iul:re y the word "Pseudo" because, in fact, the bear. is
a(:t 71l vrial by a ve ry fine nyo thread. The two

exp'r ie:~cl nfi:zticns are illustrated Ffg"ure E.la !I~
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I

- III

Fig. 8.1(a) Fig. 8.1(b)

Let us begin by discussing this pseudo free / free case; from

now on we simply refer to it as the pseudo free configuration. To
obtain a reasonable facsimile of the free beam, whose actual reali-

* zation requireF a gravity-free environment achievable only in space
cr free fal conditions with accompanying difficulties as regards
excitation and measurement, we suspend an elastic beam from a suit-
able support, preferably a high one, by a long, very fine, nylon
filament; for our purposes 3 lb. test nylon fishing line served ad-
mirably. The accelerometer is attached to the beam at the lower -

truly free - end. Just attaching the accelerometer introduces a
variety of problems in itself but we avoid that difficulty in the
present article.

We proceed now to discuss the coupled beam / filament system
in some detail. We will do this as if the beam were supported by
a single filament although a double filament arrangement such as is
shown in Fig. 8.1(b) is used in practice.

We are interested in energy losses from the beam through the
supporting filament, so we will model the beam itself via the energy

,.1
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conservative Euler-Bernoulk' equation. Assuming the beam to have
length L, uniform linear mass density p and bending modulus EI, all
constant, and assuming the cord supporting the beam to have length k
and linear mass density r, we have as the approximate energy expres-
sien for the system

L 2 - 22
+ EI dx + 1 gpL

t'* 2 z
S0

4 [P r t-J + pL - ds0 L  at' sI"

with the constraint w(L,t) = v(O,t). Here w is the beam deflection
as a function of x and v is the string deflection as a function of
s. Frox thi's energy form one readily derives the equations

}: ...... w EI w = 0, 0 5 z 5 L (

r - , 0 __ s , (8.2)

and the boundary conditons

(Ot-) (t) = 0 wY (Lt) = 0 (8.3)
9:a x 3 C), 2

EI-Y -w  (L,t) + -L v (O,t) + w(L,t) = 0 8.4)

At s £ we assume no reflection:

r 1 /2 3

o~t 0

It in rot supposed that the last condition is completely realistic.
It simply replaces more complicated assumptions ensuring that very
little, if any, energy entering the the supporting filament, or
string, is reflected back to the beam. We are assuming that waves

.,....-..-.......
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in the string move only in the direction from s = 0 to s P0. Then,
in fact, equation (8.5) is valid with P replaced by s, 0 5 s 5 P ;
in particular it is true at s = C. Using this in (8.4) along with
the constraint w(L,t) = v(O,t) we arrive at

%w t _ (rpL)/2 i _1, (L,t) 0 (8.6)
L ~-

S,4nce we as e £ large and r smral,

T = (rpL) -

: a sml.l positive number arid the boundary condition (8.6) becomes

EI _w (1,,t) . .. (L,t) = 0(8 7

:f we define

a = (p/EI

and assume solutions of the form

w(x,t) = eitw(x)

with complex, the resulting eigenfunction equation is

;.(iv) - (au ) 4  W = 0 (8.8)

Applying the boundary conditions (8.3) arid (6.7) to the general

solution of (6.8;, and setting

X= a,: , -T = /a 2

we obtain the determiriantal condition

F - cos L cosh L sin XL sinh XL

sin XL * , sinh XL - cos XL + X cosh NL
-, cos ?,I- i cosh XL c -i sin XL - ci sinh Xl

~~~~~~~~~~~~~~~~... -. ".."...-'-".-..• .-- '....."......-..... "... ..-.. .-.-.-...-.... . .-.-.-.-.. . -. ~ -. >.
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which simplifies to

2N - 2\ cos XL cosh XL + 2 i cos XL sinh XL - 2ci sin XL cosh AL = C.

A "If we let

2k - 1 ] P +

2 .

and substitute into this equation, we find that, to first order in 'x

we have

X- -- - sinh((-1) + 2 -- cosh ,
di 2  2(k-1)r L 2 (2k-1)r 2

an., fro. this :t 2s easy to see that, to first order in 1/k,

(2k-I) n

Then, to zero order in 1'k,

-2 _ (2k- ) 2T 2
2 4a L2  a L

Aor5ymptotically, then, the damping of the k-th mode of the beam
due tc the presence of the supporting filament is uniform and the

damping exponent

_2- 2 2I - _ (r L)I 2 - g 1
a;L pL pL P

tends to zero as r -1 0 and . - , i.e., as the supporting cord be-

comes very light and very long. We judge, therefore, that this ty tz
of support mechanism w_ll not lead to damping rates comparable at

high frequencies to those arising from internal sources in our labor-
atory e:perlments7.

A somewhat similar analysis shows that losses due to excitation

of a(oustic waves in the surrounding atmosphere by the high freauency

-ibrations o the beam. will also be asymptotically uniform an,] th

!.V'".?.i .:' -:". ---. .. . . . . . ........-:-....-.d-.-,"..'. -. .-.-...-: .-:-:...-2...... ..- . .-, *---- ,.. .. h ;:'2:; :'.:".
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not likely to be confused with internal damping effects.

It has been recognized by various experimenters for some time
that clamped beam experiments are subJect to substantial degrees of
interference from the interraction between the beam and the nearly,
but not quite, rigid clamping device. In order to have some means
for evaluating the likely degree of error in damping experiments un-
der these circumstances, we ask the reader to consider with us a
clamping arrangement in which the beam to be tested is, as shown in
Fig. 8.2, the relatively thin beam lying in the region x > 0, ex-
cept for a portion embedded in the more massive beam which occupies
the region x < 0 and which serves in our "thought experiment" (our
apologies to the memory of the originator of that useful expression!)

as; the clamping device, stiff but not entirely rigid - the unintended
result of most of our laboratory clamping attempts.

- - , , /w =

Fig. 8.2

W- denote lateral displacement of the thin beam by w(xt), x 0,
an- lateral displacements of the thick beam by W(y,t), x 5 0. We
will study "monochromatic", i.e., single frequency, solutions of the
combined system under the assumption that "outgoing" waves, moving
toward - , in the clamin -g beam are eventually absorbed and not ref-
'. leCtedr back to - = 0p

'pr

Adcn ng copj.' Fita: 1.an, we represent the displacement of the

....



-52-

thin bear. by

w(x,t) e a + -ye i ( ,8 t + OC ,(8.9)

where ' = (<EL), p and EL being the linear mass density and bending

rnodut_, respectively, of the thin beam. The first term represents
waves moving outward from x = 0 to - while the second term represents
wave!s '.ing inward toward x = 0 from . Because of our assumption

that all waves in the thick beam originate at x = 0 and are not ref-
e-tec1 .. u)equently, we represent the thick beam displacement by

W(x,t) = 'e(t+A <x) (8. 10)

w ere Aj = ,n), R, EI the linear mass density and bending modulus,

t 4 -7F the heavy beam. It is easy to see that the condi-
tictr th.t rno work should be done on the combined system at x = 0 is

E: - ,t) - EL (Ot) 0,

(O,t) - EL .... (0,t) 0,

wn,-re r7 an [ ha E, been defined above. Applied to (8.9) and (5. 1
,5...5,.-I. -<

Ec. - "  ELa o -EIA

3( 3 . 3 3 E A ( J O
L C L -iE La (. E!A ' ,) 0

No .:ng r. to we find tat

2 E Cc 3  A -a
EIA2(A+a) A + a

t -; convenient to renormalize r to A - a, y to A + a so that

w(x,t) = (A - cr)e A + ai( 2 t+ ) (8.12
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If the two beams are of the same material, so that E = E, then, since
L becomes small more rapidly than p as the thickness of the thin beam
decreaseE:, we shall have 0 < A < a, -1 < p 0 so that the outgoing,
i.e., reflected, wave in the thin beam has uniformly smaller modulus

V , than the incoming wave, independent of the frequency / wavelength.

Computing the boundary values of w, _- w and at x = 0at a, 't) , x

with the formula (8.11) for w(xt), we arrive at dissipative frequency

dependent bondary conditions

9 (0,t) C, a 2w (0,t) - "w (Olt),

aw ~ -a 1 () _?w

%X: (A+)2-(- ) z t~x4Ac @t~x

-" (0,t) = - w (olt) - - w o t .

(A+,)2-(A-a) at 4A at

it may be computed that the energy associated with the travelling
wave of wave length 2r,,/ac(, call it S(w,t), computed over a suitable
fi*nte, roving domain with 0 as its left hand boundary in order to
avo-d -5 being infinite, decays according to

dS(w,t) = _8Apc0
dt

while th'? energy itself, over a large domain as described, may be

seen to be proportional to (.-. We conclude, as a result, that the
ener--y de. ay rate ex:ponent must be directly proportional to the

square root of the frequency, (2, under these circumstances. It is
clear that such a damping relationship may seriously interfere with
accurate mea-urement of the internal exponential damping rate, even

though we expect the latter to be proportional to u 2 rather than w.
While actuial clamping mechanisms are not really thick beams as sup-
posed here, this analysis is, we feel, sufficiently realistic to at
least partially explain the very severe difficulties encountered in
trying to measure the damping rates of the natural modes of clamped
beams; in the laboratory.

-- ~ ~ ~ ~ .. .. .- -. *. .' .. . - - - - - - - - -*. . . . . . . . .. .
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-9. Some Experimental Results.

In a laboratory experiment the beam is excited by striking it

smartly in order to set it into vibration. A record such as the one
* shown in Figure 9.1 is obtained; in this case the record exhibited

is the graph of an input voltage to UW MIPAC's HP5451C System Analy-
zer proportional to the free endpoint lateral velocity of a canti-

leve- beam clamped at the other end.

-a 10 1 V
'.1. 0 1--r rr r

.8 -j 1

.4 ..

.2
J -. 0

-.2 -

.4

-1.0 -t - ' r r - ~ r -

0 1000 2000 3000 4000 5000
a10

- 4  SEC

, Fig. 9.1

The record initially shows a substantial high frequency component, as
evidenced by the jagged character of the graph on the left hand side.
As the motion continues we observe that the curve becomes smoother,
evidence that the high frequency component is becoming smaller in re-

lation to the overall amplitude of the motion. In fact, the amplitude
of the fundamental mode is not very different at the end of the time

Interval from what it was at the beginning; very little damping is
observed at this low frequency.

To obtain a better appreciation of the quantitative factors in-

volved in the evolution of the beam's motion, the record is divided
into a number of successive segments of equal length. The (Fast)

Fourier transform of each segment is computed and multiplied by its
conjugate to yield the power spectrum for that interval. For most
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purposes it is desirable to form the logarithm of the power spectrum,
which we henceforth call the logarithmic power spectrum. This is
what is displayed in Figure 9.2 (though for a different input record
than the one shown in Figure 9.1). Here two successive logarithmic
power spectra are superimposed to yield the complete diagram. The
peaks evident in each graph correspond to the frequencies of the

natural modes of vibration. Since it is the logarithm which is dis-
played, the vertical gaps between peaks of successive spectra are
proportional to the (negative) real part of the complex system eigen-
value assoclated with that mode of vibration while the horizontal
position of the peak corresponds to the imaginary part of the eigen-
value, i.e., to the frequency of that mode.

-40-

-50

200 400 600 800 1000 1200 iO HZ IN

Fig. 9.2

Figures 9.2 through 9.4 display logarithmic power spectra from
a "pseudo-free" boron-epoxy composite beam, a clamped wooden beam,
and a "pseudo - free" metallic beam , respectively. In these fig-

ures we have added short horizontal bars to more clearly indicate the

successive peak positions. The data is averaged over many experiments,
using the same beam, recording data over an interval of the same
length, but exciting the beam in different ways in order to adequate-
ly sample all modes. The approximately linear relationship between

damping ratio and frequency is strikingly evident for the wooden and
composite beams, less so, but still fairly convincing, for the metal-

lic beam.
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It might be natural as a result of this evidence of frequency
* proportional damping in elastic beams to suppose that all comparable

elastic structures exhibit the same sort of relationship between

*damping and frequency. Indeed, this was the author's initial predis-
position. It is here that continued experimentation in the laboratory

-. . *].C.-
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teaches us not to trust our instincts too implicitly. Figure 9.5
shows successive logarithmic power spectra obtained from longitudinal
vibrations of a steel rod, approximately one meter long and 1.5 cm.
in diameter in its circular cross section. The accelerometer is
mounted on one end and the other end is struck sharply with a heavy
steel hammer. Through the first three modes the damping rates grow
quite rapidly but then settle down to nearly constant rates, exhibit-
ing no demonstrable dependence on frequency from 10 khz. through 50
khz. . This experiment has been repeated many times with much the
same results in all cases.

--20 - -r - - -

-30 i

-50 -7 7

-p. -80

__ 0 -t

C 1000 2000 3000 4000 5000
10 HZ LIN Fig. 9.5

In reality, th's result is quite consistent with frequency pro-
portional damping in the Euler - Bernoulli beam and with our earlier
suppositions as to the source of the damping action. If the same as-
sumptions are made in regard to the internal structure of the rod as
were made for the beam, the resulting model for vibrations in the rod
takes the form of the damped wave equation (constant coefficient case
only shown here)

L
2z + 2(' )[ z - E . .. .0, (9.1)

r. - z  2y .0(x- t) [ - t - ( , ) E

0 at Ct ax 2

z(x,t) denoting the longitudinal displacement of the rod element

..
,

-" -4.-.-
- L - "

- - -"."-"- ' " ."-" " " - .';-- '.-2 " -- ' ,- , - ,,% . , 4 -,',% -".•. " • , .-. '
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whose equilibrium center of mass is at x and P(q) an interraction

kernel of the same sort as h(r) used earlier for the beam. Analy-

sis similar to that used for the infinite beam in Section 4 shows

that a damping spectrum of the type observed in Fig. 9.5, i.e., quad-

ratic damping exponent versus frequency dependence for small W and

asymptotically constant as c 4 c, results for the infinite rod and,

correspondingly, similar discrete behavior is to be expected for a

finite rod. So we may tentatively accept (9.1) as a viable model

for longitudinal, internally damped vibrations of a rod.

With (9.1) so accepted, we now envision an idealized beam con-

structed, as shown in Figure 9.6, from two such rods rigidly spaced

a distance 2b apart, with a mass-less, perfectly flexible, but inex-

tensible central support structure forming the "back - bone" of the

system. Lateral displacements of the structure will be described in

terms of the graph of the locus of the center line, w w(x,t), as

shown in the figure.

A

N, Z -4

2S

w

Fip. 9.6

Using the energy expression

L 2 dx

E(z,=- - 2 + E dx
at 0 at.. .0
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for longitudinal rod vibrations, we find with use of (9.1) and the

appropriate boundary conditions, e.g.,

1Zo,t) = -g (L,t) 0 (9.2)
x~

in the case of free ends, that for smooth solutions we have

dEz )=_ L!L  [ ,2
d -( _ - - d-(,t) ddx. (9.3)

Le-t r(xt), z(x,t) denote the longitudinal displacements of the upper
and lower rods of the beam structure, respectively. Then we find, to

first order i i;, that

' z~~t) -7. ...... (x,t) , - (x:,t) - , -(x,t)

Lel:. in

L 2

~w,') :E(z, 2 ) E(z,-) + r-wl dx (9.4)C

12
w e ha e, w'th p = 2r, = p-, El = 2. 2E,

'SI(wW + T + E W d:x (9.5)

while the dissipation form (9.3) becomes, with

d

h(x- ) - ;. :- )

d-S~w' ;h = - dt ,h(Y, ) --" '(tt-- (wxt t( t) d dx. (9.6)

L tx -L

. is very s,.&:.' in comparison with both ; and EI

(i.e., we assume very small and E very large), the cond--o: t....

-------



-60-

-.:he tie derivative of (9.5 ) with respect to t should be (9.6)
.eadis to the equation (3.7), with h(x,t) = Vh(x-t) there, and the
a-riated boundary conditions. If I is not neglected we obtainp
:he ccrre. ponding Rayleigh model with damping term as in the Euler-
Berno)uli model (3.7). Thus the rod model (9.1) is consistent
with our earlier developed beam models. Significantly, as we remark-
ed at the end of Section 4, for the damped Rayleigh model the helh
freq,'u,.cy damping ex:ponent predicted by that model has the same prop-
erlties as has been observed in the laboratory (Figure 9.5) and as are
pre-cte from. t he model equation (9.1).

W. .

4.
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10. Concluding -Remarks.

In this paper we have attempted to:

(i) Show that laboratory beams of various types do exhibit
modes whose damping exponents are proportional to frequency
&t the high end of the spectrum;

(il) Show that there is a relatively simple mathematical model
which exhibits comparable spectral behavior and whose form
is enplainable in terms of plausible physical properties of
the beam;

(iii) Show that numerical calculations using a spline based app-
ro::4mation of our mathematical model yield calculated
spectral values qual.2i tatively consistent with those ob-
t -neo from laboratory experimentation and predicted from
a:.ly-is of the mathematical model.

Some readers may object that the motivation of the damping term
in our equation (3.7) is based on a heuristic, plausibility argument
rather th-1. on the accepted modu5 cperaT'di of introducing an approp-
riate c _nFti..ive equation and deriving the dynamics from that point

of departure [. About all we can say in defense of ourselves on this
point i"s that we are probably not the best person equipped to do
tis; WE have presented sufficient motivation to allow others who
specialize in continuum mechanics to carry out such a program if they
are nrcalned to do so. Along the same lines, we also realize that
our interpretation of the action of the damping term in terms of fib-
ei structure of the beam, or comparable action of extended crystal
structures, may well turn out to be inadequate in the light of other
information about the manner in which damping forces act in elastic

structuc e.

We do, without apology, insist that laboratory measurement of
damping rates, though necessarily flawed to some extent by exogenous
influences, which we have taken some pains to analyze here, must be
the final arbiter in deciding between putative damping mechanisms.
Even spotlessly correct theoretical reasoning cannot ultimately
take precedence - though it could indicate the need for more careful

borator)y work-.. ... of experiments on our part do indicate

,A ~km .........,. .. ,..-............-..,.... •- , .. ...... -. .--....... .... ,,.............. ...-...
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frequency proportional damping at the high end of the spectrum and
some sort of quadratic behavior, or at least the dominance of a dif-
ferent proportionality constant, at lower frequencies. We invite
other interested researchers to carry out similar experimentation
and model development complementing, or perhaps even replacing, that
reported here.

The reality of near quadratic dependence of the damping expon-
ent on frequency at the low end of the spectrum seems to us to be a
very important question. Just citing the models introduced in this
arti:.e, whether or not this phenomenon is real appears to be the
Sdccisive factor in choosing the model which we have proposed in pre-
ference to "square root" damping as in (2.3) which we have, for the
pr ,:e/t at least, rejec-,ed as not adequately explainable in physical

-. .. -hcl,:;h we have conceded that it could be justified in terms

.Cet covered by travelling waves of a given frequency. If
- bi- c,!n: :~ively demonstrated that low frequency modes are

... ..... . rae hich bear the same relationship to frequency as the
r .ate: a 2--cated with high-er frequency modes then the whole

-- -. p:.7 17;e!? wuld have to be reconsidered in that light. To

Srt w-auld seem, to be necessary Lo conduct e:-:Per:-

7. . " , beams having a large number of low frequency

- eer(,tM us that the frequency independent damping of
%hr m-es appare.t ly applying to longitudinal rod vibraticns is
* a vr- of trh theory. It is particularly signifcant that

t-ls moie of damping is consistent with the very different sort of
damping observed in the beam and it is intriguing that the mode of

" wi.ch apparently applies for the rod is what is necessary

pr ?:eJ-: e controllability by means of finite dimensional controls.
-f frequen-y pro)portioral damping exponents did apply to longitudinal
vibrationEs of the rod, those vibrations would be uncontrollable in
either the sense standard for the one dimensional wave equation [ L
or that which applies to parabolic processes [ M ]. The whole area is
a most intriguing one. If this article should serve to encourage more
researchers to enter the area, even if only to refute our contribu-

ti,-ns, this article will have served its purpose.

F

fl
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